Учебное пособие адресованo студентам, обучающимся по направлению 010400 «Прикладная математика и информатика», специальности «Математические методы в экономике».

Целью курса «Теория вероятностей (случайные процессы)» является изучение закономерностей случайных процессов, построение математических моделей реальных процессов в различных классах случайных функций. Изучение формального математического аппарата теории случайных процессов. Возможности его использования при дальней обучении, применение методов теории случайных процессов для решения проблем практической деятельности.

Задачей курса является знакомство студентов с основными понятиями теории случайных процессов, изучение основных классов случайных процессов,  методов их исследования, нахождения основных вероятностно-временных характеристик систем, функционирование которых определяется случайными процессами из заданного класса.

Для изучения данного модуля обучающемуся необходимы знания и умения в следующих областях: математический анализ и линейная алгебра, дифференциальные уравнения, теория вероятностей и математическая статистика, теория случайных процессов и теория массового обслуживания.

Место курса

Курс относится к разделу «Теория вероятностей и математическая статистика» и входит в блок общепрофессиональных дисциплин учебного плана направления «Прикладная математика и информатика», закладывает основы фундаментальных математических знаний.

Данная дисциплина будет необходима для изучения приложений математических методов, в частности, моделей и методов теории случайных процессов и теории массового обслуживания

Электронное учебное пособие предназначено для методического обеспечения практических занятий и самостоятельной работы студентов в рамках курса «Теория случайных процессов», изучаемого на факультете прикладной математики и кибернетики. для самостоятельного изучения теоретического материала. Материал каждой темы курса структурирован в виде гипертекста. Для усиления наглядности, улучшения восприятия и запоминания информации в электронное пособие включены рисунки и таблицы. Представлен список рекомендуемой литературы.

Изучать курс рекомендуется в соответствии с той последовательностью, которая обозначена в его содержании.

В первой главе даются основные определения и рассматриваются и характеристики случайных процессов: конечномерные распределения и моментные характеристики. Материал данной главы является базовым для более детального изучения случайных процессов в последующих главах.

Во второй  и третьей главах, после введения основных понятий теории Марковских процессов с дискретными состояниями  основное внимание уделяется обоснованию и анализу системы уравнений Колмогорова для вероятностей состояний. Для иллюстрации основных положений  рассматриваемой теории даны определения процессов»гибели –размножения» проанализированы их свойства и предельные характеристики

В четвертой главе изложена элементарная теория массового обслуживания (ТМО), которая опирается на методы исследования Марковских процессов с дискретными состояниями. Материал этой главы предназначен для знакомства с ТМО и ее возможными приложениями.

Для усвоения материала 5-7 глав, в которых содержатся основные положения теории Марковских процессов с непрерывными состояниями, теории стохастических дифференциальных уравнений и интегралов необходимо хорошее знание теории дифференциальных уравнений.

В каждой главе рассмотрены решения  многочисленных типовых примеров. Контролирующий модуль представлен набором задач для самостоятельной работы.  Решение задач дает возможность самостоятельно проверить и оценить приобретенные знания, обнаружить имеющиеся пробелы и сделать собственные выводы.

С целью более глубокого изучения тем, представленных в данном ЭОР, можно воспользоваться источниками, приведёнными в списке рекомендуемой литературы

Удачи Вам при изучении курса!