Сигнал, выработанный одним логическим элементом можно подавать на вход другого логического элемента. Это дает возможность образовывать цепочки из отдельных логических элементов. На рисунке 15 показаны примеры таких цепочек.
![]() |
![]() |
На рисунке 15 а) элемент ИЛИ (дизъюнктор) соединен с элементом НЕ (инвертор), а на рисунке 15 б) - элемент И (конъюнктор) с элементом НЕ (инвертор). Каждую такую цепочку будем называть логическим устройством: поскольку она состоит из нескольких элементов.
![]() |
Цепочку из логических элементов будем называть логическим устройством. Схемы, соответствующие таким устройствам, называют функциональными . |
На рисунке 16 приведен пример более сложной функциональной схемы.
Составить логическую схему по функциональной формуле достаточно просто. Например, функциональная схема, изображенная на рисунке 16, имеет два входа A и B. До поступления на конъюнктор B отрицается, а затем отрицается результат логического умножения. Все это приводит нас к формуле
![]() |
(21) |
которая представляет собой структурную формулу логического устройства. Важно научиться решать и обратную задачу: по структурной формуле вычерчивать соответствующую ей функциональную схему. Усложним задачу. Пусть имеется произвольная логическая функция, требуется построить функциональную схему.
Алгоритм решения такой задачи начинается с построения таблицы истинности. Затем в таблице следует определить одну или несколько строк, с результатом равным 1. На следующем шаге необходимо выписать комбинацию входных переменных, соединенных логическим умножением. Если входная переменная в нужной нам строке имеет значение 0, то она должна войти в логическое выражение с отрицанием. Полученные таким образом конъюнкции требуется логически сложить. Далее полученную формулу нужно сократить с использованием логических законов. Рассмотрим этот алгоритм на следующем примере.
Задача 7. Начертить функциональную схему, соответствующую таблице истинности.
A | B | F(A,B) |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Решение.
Рассмотрим строки, которые в столбце F(A,B) дают истину (эти строки в таблице выделены). Составим по первой строке выражение (A следует отрицать, потому что в таблице стоит 0), аналогичное выражение по третьей строке дает
. Соединяем два последних выражения союзом ИЛИ, получим
. Вычерчиваем по логическому выражению функциональную схему.
![]() |
Логическую функцию F(A,B)=Ā Λ B V A Λ ![]() ![]() |
Еще один пример построения функциональной схемы.