Ферменты (энзимы) – белки, выполняющие функции биокатализаторов многочисленных химических (биохимических) реакций. Поскольку биотехнология основана на промышленном использовании биопроцессов, которые в значительной мере обеспечиваются ферментами, по существу, ни одна биотехнология не обходится без них. Ферментные системы микроорганизмов (бактерий, дрожжей) были первыми в истории человечества орудиями биотехнологий, на которых основано виноделие, пивоварение, переработка молока и т.д.

Первоначально во многих случаях ферменты использовали в биотехнологическом производстве только в составе живых клеток, которыми нужно уметь управлять так, чтобы мобилизовать содержащиеся в них ферменты на нужные для производства биопроцессы. В постепенном вытеснении живых (полуоткрытых) систем, каковыми являются клетки и организмы, биохимическими, т.е. полностью открытыми системами, состоящими из изолированных клеточных структур, и заключается тенденция прогресса в биотехнологии.

Одно из достижений биотехнологии – выделение ферментов из термофильных бактерий. Они термостабильны, что ценится промышленным производством. В частности, в органическом синтезе широко применяют никельсодержащую гидрогеназу из Methanobacterium thermoautotrophicum. Большинство ферментов промышленного пользования получают из микроорганизмов и грибов. Только редкие ферменты растительного и животного происхождения (например, папаин, получаемый из плодов папайи) находят промышленное применение.

Ферменты из микроорганизмов все чаще заменяют используемые в некоторых отраслях промышленности аналогичные растительные и животные ферменты. Так, в пивоварении и хлебопечении амилазы Bacillus и Aspergillus сейчас заменили амилазы из пшеничного солода и ячменя, а протеазы из Aspergillus заменили животные и растительные протеазы, употребляемые для размягчения мяса.

Из 2 тыс. известных сейчас ферментов только около 10 % (~200) вовлечено в промышленное производство.

Не может обойтись без ферментов и медицина. Например, холестериноксидазу используют в диагностике для определения уровня холестерина в сыворотке крови. Продуцируемую грибами супероксиддисмутазу применяют для лечения артритов, болезней сердца и при трансплантации почек. Терапевтическими свойствами обладают белки стрептокиназа из Е. coli, аспарагиназа из Erwinia chrysanthemi и др. Ферменты используют для растворения тромбов, удаления из организма токсических веществ, лечения рака, ожогов. Известно около 200 наследственных заболеваний, связанных с дефицитом ферментов или иных белковых факторов. Их лечение возможно путем введения в организм больных чужеродных ферментов, замещающих отсутствующие эндогенные. При септических процессах, инфаркте миокарда, эмфиземе легких, панкреатите применяют ингибиторы ферментов протеаз, получаемые из актиномицетов (химостатин, антипаин и др.) и генно-инженерных штаммов Е. coli (эглин) или дрожжей (антитрипсин).

Перспективны ферменты и для синтеза тонких химических веществ и осуществления многих производственных процессов в пищевой и фармацевтической промышленности. К ним относятся ферменты, помогающие получать высокофруктозный сироп, способствующие свертыванию молока, гидролизу лактозы, белков и жиров, участвующие в синтезе полусинтетического пенициллина, аминокислоты лизина и др. Широко применяют в промышленности липазы различного происхождения, которые катализируют многие сложные химические процессы. Например, катализируемая липазой очистка пальмового масла используется для производства какаового масла, 30 % которого содержится в шоколаде.

Коммерческий интерес проявляют, например, к энзиматическому синтезу дипептида аспартама, – низкокалорийному пищевому сладкому агенту. Химически этот продукт получали путем соединения ангидрида формил-аспарагиновой кислоты и метилового эфира фенилаланина. Этот процесс протекает неэффективно, и образующийся аспартам загрязнен другими продуктами реакции. Энзиматически же, с помощью термолизина, синтезируется только чистый аспартам, выход которого составляет больше 99 %.

Ожидается, что прикладная энзимология затронет также область промышленной модификации сахаров и спиртов, эстерификацию олигосахаридов и рибофлавина (витамина В2) и др. Для повышения выхода конечного продукта, упрощения ферментативных процессов и повышения их производственной эффективности в нынешние технологии получения и использования ферментов внедряют генно-инженерные методы.

Биотехнологические процессы, состоящие из нескольких ферментативных актов, удается упростить благодаря включению в хромосому одной бактерии всех генов, кодирующих эти ферменты. Таким способом уже удалось в одном ферментационном чане превращать крахмал во фруктозную патоку, ранее для этого процесса требовалось 3 разных фермента – амилаза, глюкоамилаза и глюкоизомераза. Для модификации активных центров ферментов и усиления их каталитической активности специалисты возлагают большие надежды на разрабатываемые методы белковой инженерии.