Рассмотрим идеализированный случай сложения двух монохроматических волн одинаковой частоты. Уравнение плоской монохроматической волны, распространяющейся в положительном направлении оси X, имеет вид:
Если амплитуда и начальная фаза
одинаковы во все моменты времени во всем пространстве, то волна называется однородной. Строго монохроматические волны никогда не могут быть точно реализованы в действительности и представляют идеализацию реальных волновых процессов. Условия применимости этой идеализации в каждой конкретной задаче требуют специального рассмотрения.
Пусть две плоские монохроматические волны одной частоты, накладываясь друг на друга, возбуждают в некоторой точке пространства колебания одинакового направления:
и
, где
,
.
Для сложения колебаний воспользуемся методом векторной диаграммы. Как видно из рис. 2.4, согласно теореме косинусов амплитуда результирующего колебания будет равна
Так как угол , то амплитуда результирующего колебания в данной точке определится выражением:
, а интенсивность:
![]() |
(2.4) |
где .
Если ,
, то интенсивность максимальна:
, если
, то интенсивность минимальна:
.
Таким образом, при наложении двух монохроматических волн происходит устойчивое во времени перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других – минимумы интенсивности. В тех точках пространства, для которых , результирующая интенсивность
; в точках, где
, результирующая интенсивность
.
Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: . Тогда в максимумах
, в минимумах же
. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность
.