Рис. 6.5. При движении тела в жидкости на него действуют силы

Идеальная жидкость является физической моделью, позволяющей понять суть явления в некотором приближении. Всем реальным жидкостям присуща вязкость или внутреннее трение, что приводит к появлению у них принципиально новых свойств. В частности, возникшее в жидкости движение после прекращения действия причин, его вызвавших, постепенно замедляется. Следовательно, жидкость при своем движении в трубе испытывает сопротивление. Такого рода сопротивление называют вязким, подчеркивая тем самым отличие от сопротивления в твердых телах. При движении тела в такой жидкости на него действуют силы. Равнодействующую этих сил обозначим через . Силу  можно разложить на две составляющих (рис. 6.5): . Силу  называют лобовым сопротивлением, а  – подъемной силой.

Если жидкость обладает вязкостью, то очень тонкий слой жидкости прилипает к поверхности тела и движется с ним как одно целое, увлекая за собой из-за трения последующие слои. По мере удаления от тела скорость уменьшается, то есть тело оказывается окруженным пограничным слоем жидкости, в котором скорость изменяется в направлении, перпендикулярном скорости. В нем действуют силы трения, которые в конечном итоге оказываются приложенными к телу и приводят к лобовому сопротивлению. Кроме того, из-за сил трения поток отрывается от поверхности тела, в результате чего позади тела возникают вихри. Вихри уносятся потоком и постепенно затухают вследствие трения. Давление в образующейся за потоком вихревой области оказывается пониженным, поэтому результирующая сил давления будет отлична от нуля, что в свою очередь обусловливает лобовое сопротивление. 

Рис. 6.6. Обтекание жидкостью полуцилиндра

Таким образом, лобовое сопротивление складывается из сопротивления трения и сопротивления давления. При этом сопротивление давления зависит от формы тела. Соотношение между сопротивлением трения и сопротивлением давления определяется свойствами жидкости. Лобовое сопротивление в идеальной жидкости отсутствует, в то время как подъемная сила может быть не равна нулю.

Для возникновения подъемной силы вязкость жидкости не имеет существенного значения. Пусть идеальной жидкостью обтекается полуцилиндр (рис. 6.6). Вследствие полного обтекания линии тока будут симметричны относительно СД. Однако относительно прямой АВ картина будет несимметричной. Линии тока сгущаются вблизи точки С, поэтому давление там будет меньше, чем вблизи точки Д, благодаря чему и возникает подъемная сила. Аналогично подъемная сила возникает и в вязкой жидкости. Благодаря подъемной силе летают птицы и самолеты. Разрез крыла у них практически одинаковый: за счет сложной формы крыла создается разница обтекающих его сверху и снизу воздушных потоков, что позволяет телу подниматься вверх (рис. 6.7). Крыло в разрезе представляет собой сочетание двух выпуклых линий, причем кривизна верхнего контура больше, чем кривизна нижнего, в результате чего площадь верхней поверхности крыла больше площади его нижней поверхности. Именно эта малозаметная деталь конструкции и позволяет самолету весом в несколько сот тонн, разогнавшись, оторваться от взлетной полосы. Чтобы двум потокам сомкнуться за задней кромкой крыла, не образуя вакуума, воздух, обтекающий верхнюю поверхность крыла, должен двигаться быстрее относительно самолета, чем воздух, обтекающий нижнюю поверхность, поскольку ему нужно преодолеть большее расстояние. В результате, по мере набора самолетом скорости, возрастает направленная вверх разность давлений, и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет поднимается в воздух. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости подъемная сила уравновешивает силу тяжести.

Силой, поддерживающей самолет в воздухе, является подъемная сила. Лобовое сопротивление играет при этом вредную роль. Поэтому крыльям самолета и фюзеляжу придают обтекаемую форму. Такую же обтекаемую форму имеет тело летящей птицы, дельфина, дельтаплана, движущегося с огромной скоростью спортивного автомобиля.

Примеры